
Fixed-Point Designer™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Fixed-Point Designer™ Release Notes
© COPYRIGHT 2013–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

R2015b

Simulink Fixed-Point Tool workflow simplification: Propose
signedness and data types for inherited and floating-point
types . 1-2

System under design (SUD) specification 1-2
Signedness proposals . 1-2
Proposals for objects using inherited and floating-point types 1-3
Two-way traceability between model and Fixed-Point Tool . . 1-3
New configurations for model settings 1-4

Double-precision to single-precision conversion: Convert
double-precision MATLAB code to single-precision
MATLAB code using the command line 1-4

MATLAB Fixed-Point Converter app streamlined workflow:
Restore project state and minimize regeneration of MEX
files . 1-5

Saving and restoring fixed-point conversion workflow state in
the app . 1-5

Minimized regeneration of MEX files 1-5
Specification of additional fimath properties in app editor . . 1-6
Improved management of comparison plots 1-6
Variable specializations . 1-7
Improvements to Readability of Generated Code 1-8
Tab completion for specifying files . 1-9
Improvements for manual type definition 1-9
Compatibility between the app colors and MATLAB

preferences . 1-10

Range analysis for Delay blocks: Improve accuracy and speed
of range analysis on models using Delay blocks 1-10

iv Contents

Control of signed shifts in fixed-point scaling operations:
Control the use of signed shifts in generated code 1-11

MATLAB . 1-11
Simulink . 1-12

Access full-precision value of fi object in decimal and string
format . 1-12

Detection of multiword operations . 1-12
MATLAB . 1-12
Simulink . 1-13

Enhanced Model Advisor check for implementing strict
single-precision designs . 1-13

System object instrumentation in Fixed-Point Tool 1-13

R2015a

Derived Ranges for MATLAB Function Blocks in Simulink . 2-2

Fixed-Point Converter app enhancements, including
detection of dead and constant folded code, support for
projects with multiple entry point functions and support
for global variables . 2-2

Support for projects with multiple entry-point functions 2-2
Support for global variables . 2-2
Code coverage based translation . 2-2
Conversion from project to MATLAB scripts for command-line

fixed-point conversion . 2-3
Generated fixed-point code enhancements 2-3
Integration with MATLAB Coder app interface 2-3

Automated conversion of additional DSP System objects
using the Fixed-Point Converter app 2-3

Fixed-Point SimState logging and root logging
improvements . 2-4

v

Flexible structure assignment of buses 2-4

eye(m,'like',a) syntax supported for fixed-point inputs . . 2-4

New interpolation method for generating lookup table
MATLAB function replacements . 2-4

Fixed-point scaling information in Code Interface Report . . 2-5

R2014b

Fixed-Point Converter app for automated conversion of
floating-point MATLAB code . 3-2

Commands for scripting fixed-point conversion and accessing
the collected data in Simulink . 3-2

Automated fixed-point conversion for commonly used DSP
System objects, including Biquad Filter, FIR Filter, and
FIR Rate Converter . 3-3

Simulation range collection and data type proposals for
MATLAB Function blocks in Simulink 3-3

Overflow diagnostics to distinguish between wrap and
saturation in Simulink . 3-3

Highlighting of potential data type issues in generated HTML
report . 3-4

Code generation of for loops using fixed-point loop indices . 3-4

Cast net slope computations using rational numbers 3-4

Lock Column View option in the Fixed-Point Tool 3-4

Fixed-Point Advisor enhancements . 3-5

hdlram renamed hdl.RAM . 3-5

vi Contents

Changes to data type strings . 3-5
Signal data type display . 3-5
tostring function now uses 0 and 1 to represent signedness . . 3-5

New featured examples . 3-6

R2014a

Data type override and automatic data typing for bus
objects . 4-2

Data type override for bus objects . 4-2
Autoscaling for bus objects . 4-2

Derived ranges for complex signals in Simulink 4-2

cordicsqrt function for fixed-point CORDIC-based square
root functionality . 4-2

Overflow detection with scaled double data types in MATLAB
Coder projects . 4-3

Fixed-point ARM Cortex-M code replacement support for
DSP System Toolbox FIR filters . 4-3

Fixed-Point Advisor support for referenced configuration
sets . 4-3

Enhancements to automated conversion of MATLAB code . 4-3
Support for MATLAB classes . 4-3
Generated fixed-point code enhancements 4-4
Fixed-point report . 4-4

Automatic C compiler setup . 4-4

More flexible control of dsp.LMSFilter System object fixed-
point settings . 4-4

Derived ranges for For Each and For Each Subsystem
blocks . 4-5

vii

R2013b

C99 long long integer data type for embedded code
generation . 5-2

Model Advisor fixed-point checks with additional coverage
and optimization awareness . 5-2

fi object as an index in colon expressions and an argument
to numel and bit index functions . 5-3

fi object as an index in colon expressions 5-3
fi objects as bit index input argument 5-3
fi objects as shift-value input argument 5-3
numel function support for fi inputs 5-3

Improved efficiency of data type internal rules for Lookup
Table blocks . 5-3

Derived ranges for complex variables in MATLAB Coder
projects . 5-4

Simplified modeling of single-precision designs 5-4

Range analysis support on Mac platforms 5-5

Changes to showInstrumentationResults function options . 5-5
New option to suppress display of MATLAB code 5-5
Removal of -browser option . 5-5

Changes to Continuous state-space block family range
analysis support . 5-5

Enhanced fiaccel support for int64 and uint64 functions . . . 5-6

Support for LCC compiler on Microsoft Windows (64-bit)
machines . 5-6

Warning for use of inexact fi and fimath property names . 5-6

Conversion of numeric variables into Simulink.Parameter
objects . 5-6

viii Contents

Fixed-point conversion test file coverage results 5-7

Fixed-point conversion workflow supports designs that use
enumerated types . 5-7

Fixed-point conversion of variable-size data using simulation
ranges . 5-7

Error checking improvements for bitconcat, bitandreduce,
bitorreduce, bitxorreduce, bitsliceget functions 5-7

Legacy data type specification functions return numeric
objects . 5-8

numberofelements function being removed in a future
release . 5-10

R2013a

Product restructuring . 6-2

Histogram logging in instrumented MATLAB Code
Generation report . 6-2

fi object in indexing and switch-case expressions 6-2

zeros, ones, and cast code reuse for floating-point and fixed-
point types . 6-2

Code generation for x.^n when n is a variable and x is a fi
object . 6-4

Fixed-Point Advisor support for model reference 6-4

Automated conversion of floating-point to fixed-point types
in MATLAB Coder projects . 6-4

Improved autoscaling for models with virtual bus signals . . 6-5

ix

Data Type Override for MATLAB Function block using built-
in doubles and singles . 6-5

Instrumentation for arrays of structs 6-5

File I/O function support . 6-5

Support for nonpersistent handle objects 6-6

Load from MAT-files for code acceleration 6-6

New toolbox functions supported for code acceleration and
generation . 6-6

Function to be removed in a future release 6-7

Function being removed . 6-8

R2015b
Version: 5.1

New Features

Bug Fixes

R2015b

1-2

Simulink Fixed-Point Tool workflow simplification: Propose signedness
and data types for inherited and floating-point types

System under design (SUD) specification

Upon opening the Fixed-Point Tool, you must now select the system under design for
fixed-point conversion. Once selected, the system name will appear highlighted in green
in the Model Hierarchy pane. The Fixed-Point Tool will propose and apply data types
for the selected system only.

To change the system under design, click Change. In the dialog, select the system you
want to convert.

Signedness proposals

The Fixed-Point Tool now proposes signedness for blocks in your system under design. To
get signedness proposals for blocks in your model, in the Automatic data typing pane,
select the Signedness check box.

The Fixed-Point Tool bases its signedness proposals on collected range information and
block constraints. Signals that are always strictly positive now get an unsigned data type
proposal, gaining an additional bit of precision compared to previous releases.

1-3

By default, the Signedness check box is selected. If you clear the check box, the Fixed-
Point Tool proposes a signed data type for all results that currently specify a floating-
point or an inherited output data type unless other constraints are present. If a result
specifies a fixed-point output data type, the Fixed-Point Tool will propose a data type
with the same signedness as the currently specified data type unless other constraints
are present.

Proposals for objects using inherited and floating-point types

You can now elect to receive proposals for objects in your model that use floating-point
data types or one of the inherited data types for block outputs. To get proposals for
objects using floating-point or inherited data types, in the Automatic data typing pane,
select the corresponding check boxes.

By default, the Inherited and Floating point check boxes are selected. If you clear the
Inherited or Floating point check boxes, the Fixed-Point Tool will not propose a fixed-
point data type for results that use an inherited or floating-point data type respectively.

Two-way traceability between model and Fixed-Point Tool

You can now trace between Simulink® blocks in your model and their corresponding
results in the Fixed-Point Tool. This capability simplifies the task of debugging overflows

R2015b

1-4

and other data type propagation issues in your model. Right-click on a block in your
Simulink model and select Fixed-Point Tool Result to highlight the result in the
Contents pane of the Fixed-Point Tool. You can also trace a result back to the model by
right-clicking a result in the Contents pane and selecting Highlight in Editor.

New configurations for model settings

Under Configure model settings in the Fixed-Point Tool, use the configurations to set
up your model for range collection.

• The Range collection using double override configuration overrides the data
types in your model to doubles and enables instrumentation of your model. Use these
settings to collect simulation ranges using ideal floating-point data types.

• The Range collection with specified data types configuration removes data
type override and enables instrumentation of your model. Use this shortcut to collect
simulation ranges using the data types specified in your model and to validate current
behavior.

• The Remove overrides and disable range collection configuration restores
your model to its specified numeric behavior and disables instrumentation to restore
maximum speed. Use this shortcut to clean up model settings after conversion.

Double-precision to single-precision conversion: Convert double-precision
MATLAB code to single-precision MATLAB code using the command line

In R2015b, you can use the convertToSingle function to convert double-precision
MATLAB® code to single-precision MATLAB code.

You can verify the behavior of a single-precision version of your code without modifying
the original algorithm. When a double precision operation cannot be removed, the report
highlights the MATLAB expression that results in that operation.

For example, to generate single-precision MATLAB code from a double-precision function
myfunction that takes two double arguments:

convertToSingle myfunction -args {1 2}

To use verification options, create a coder.SingleConfig object that you pass to
convertToSingle. You can:

• Test numerics by running the test file with the single-precision types applied.
• Compare double-precision and single-precision test results using the Simulation Data

Inspector or your own plotting functions.

1-5

scfg = coder.config('single');

scfg.TestBenchName = 'myfunction_test';

scfg.TestNumerics = true;

scfg.LogIOForComparisonPlotting = true;

convertToSingle -config scfg myfunction -args {1 2}

If you also have a MATLAB Coder™ license, you can:

• Generate single-precision C code using the MATLAB Coder app. Use this workflow if
your goal is to generate single-precision C code in the most direct way and you do not
want to see the intermediate single-precision MATLAB code.

• Generate single-precision C code using codegen with the -singleC option. Use this
workflow when you want to generate single-precision C code in the most direct way
and you do not want to see the intermediate single-precision MATLAB code

• Generate single-precision MATLAB code using codegen with a
coder.SingleConfig object. Use this workflow if you want to see the single-
precision MATLAB code or use verification options.

• Generate single-precision C code using codegen with a coder.SingleConfig object
and a code configuration object. Use this workflow to generate single-precision C
code when you also want to see the single-precision MATLAB code or use verification
options.

For more information about single-precision conversion using MATLAB Coder, see the
MATLAB Coder release notes.

MATLAB Fixed-Point Converter app streamlined workflow: Restore project
state and minimize regeneration of MEX files

Saving and restoring fixed-point conversion workflow state in the app

If you close a project before completing the fixed-point conversion process, the app saves
your work. When you reopen the project, the app restores the state. You do not have to
repeat the fixed-point conversion steps that you completed in a previous session. For
example, suppose you close the project after data type proposal. When you reopen the
project, the app shows the results of the data type proposal and enables conversion. You
can continue where you left off.

Minimized regeneration of MEX files

The Fixed-Point Converter app now optimizes when it regenerates MEX files. The app
will only rebuild the MEX file when required by changes in your code.

R2015b

1-6

Specification of additional fimath properties in app editor

You can now control all fimath properties of variables in your code from within the
Fixed-Point Converter app editor. To modify the fimath settings of a variable, select
a variable and click FIMATH in the dialog that appears. You can alter the Rounding
method, Overflow action, Product mode, and Sum mode properties. You can also modify
these properties from the settings pane. For more information on these properties, see
fimath.

Improved management of comparison plots

The Fixed-Point Converter app now docks plots generated during the testing phase
of your fixed-point code into separate tabs of one figure window. Each tabbed figure
represents one input or output variable and is labeled with the function, variable,
word length, and a timestamp. Each tab contains three sub plots. The plots use a time
series based plotting function to show the floating-point and fixed-point results and the
difference between them.

Subsequent iterations are also plotted in the same figure window.

1-7

Variable specializations

On the Convert to Fixed Point page, in the Variables table of the app, you can now
view variable specializations.

R2015b

1-8

Improvements to Readability of Generated Code

Structs

• When struct copies exist in the design, a separate function is now created to perform
the copy.

• Copies of structs are now avoided when the types of all fields match, improving both
readability and efficiency of the generated code.

fimath

• fimath settings are now specified in a separate function to improve the readability of
the generated fixed-point code.

• To avoid a mismatch of fimath settings in an expression, the generated code now
uses the removefimath function.

1-9

function [y] = my_add_fixpt(a,b)

%Adds a and b

fm = getConversionFimath();

y=fi(removefimath(a)+b, 0, 8, 0, fm);

end

function fm = getConversionFimath()

 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',...

 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128,...

 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);

end

Matrices

Growth and deletion of matrices within a design are now supported for fixed-point
conversion.

function matrix_deletion_fixpt(a,i)

 fm = getConversionFimath();

 var = fi([1, 2, 3], 0, 2, 0, fm);

 coder.varsize('var');

 var(2) = []; %matrix deletion.

 var(2) = fi(2, 0, 2, 0, fm);

end

function [out] = matrix_growth_fixpt(x)

 fm = getConversionFimath();

 out = fi([], 0, 4, 0, fm);

 for ii = 1:10

 out = [out x];

 end

end

Tab completion for specifying files

On the Select Source Files and Define Input Types pages of the Fixed-Point
Converter app, you can now use tab completion to specify your entry-point functions and
test bench file.

Improvements for manual type definition

Improvements for manual type definition include:

R2015b

1-10

• New right-click menus options to specify array size.

• Easier definition of structure types. You can:

• Use the new icon to add fields.
• See the structure type name in the table of input variables.

• Easier definition of embedded.fi types. You can:

• See the numerictype properties in the table of input variables.

• Use the new icon to change the numerictype properties.

Compatibility between the app colors and MATLAB preferences

The app uses colors that are compatible with the Desktop tool colors preference in the
MATLAB preferences. For information about MATLAB preferences, see “Preferences”.

Range analysis for Delay blocks: Improve accuracy and speed of range
analysis on models using Delay blocks

Using the Fixed-Point Tool, you can now derive ranges for models that use Delay
blocks with greater precision. The Fixed-Point Tool can also derive ranges for certain

1-11

configurations of cascading Delay blocks with greater theoretical accuracy and speed. For
more information on range analysis in the Fixed-Point Tool, see “How Range Analysis
Works”.

Control of signed shifts in fixed-point scaling operations: Control the use
of signed shifts in generated code

You can now control the use of signed right shifts in your generated code. Some coding
standards do not allow bitwise operations on signed integers. Disabling the use of signed
shifts in generated code increases the likelihood of compliance with MISRA. When you
specify that signed right shifts should not be used in your generated code, the software
replaces signed shifts with a call to a function that performs the operation without the
use of signed shifts.

This feature requires an Embedded Coder® license.

MATLAB

To specify that MATLAB Coder not use signed right shifts:

• Using the MATLAB Coder app:

1 On the Generate Code page, to open the Generate dialog box, click the
Generate arrow .

2 Set Build type to one of the following:

• Source Code

• Static Library (.lib)

• Dynamic Library (.dll)

• Executable (.exe)

3 Click More Settings.
4 On the Code Appearance tab, clear the Allow right shifts on signed

integers check box.
• Using the command-line interface:

1 Create a code configuration object for 'lib', 'dll', or 'exe'.

cfg = coder.config('lib','ecoder',true); % or dll or exe

R2015b

1-12

2 Set the EnableSignedRightShifts property to false.

cfg.EnableSignedRightShifts = false;

Simulink

To specify that the code generator not use signed right shifts, in the Configuration
Parameters dialog box, on the Code Generation > Code Style pane, clear “Allow right
shifts on signed integers” or set the parameter EnableSignedRightShifts to off.

To improve coding standard compliance for bitwise operations on signed integers, run the
following checks:

• “Check for bitwise operations on signed integers” - Check to identify blocks that
contain bitwise operations on signed integers.

• “Check configuration parameters for MISRA C:2012” - Check that verifies that you
cleared Code Generation > Code Style > Allow right shifts on signed integers.

Access full-precision value of fi object in decimal and string format

You can now set and get full-precision real-world values of fi objects using the new
Value property. This provides easy access to exact values in decimal format.

The tostring function now accepts fi object inputs allowing you to convert fi objects
to a string that you can copy and paste into a MATLAB script or function. The mat2str
function now also supports fi object inputs allowing you to convert fi objects to strings
without first converting to a double value.

Detection of multiword operations

When an operation has an input or output larger than the largest word size of your
processor, the generated code contains multiword operations. Multiword operations
can be inefficient on hardware. In both MATLAB and Simulink, you can now detect
operations that will result in multiword code.

MATLAB

The expensive fixed-point operations check now highlights expressions in your MATLAB
code that could result in multiword operations in generated code. For more information
on enabling this check, see “Find and Address Multiword Operations”.

1-13

Simulink

The Identify questionable fixed-point operations check in the Model Advisor now
detects multiword operations in generated code. For more information, see “Identify
Questionable Fixed-Point Operations”.

Enhanced Model Advisor check for implementing strict single-precision
designs

The Model Advisor Modeling Single-Precision Systems > Identify questionable
operations for strict single-precision design check now verifies the status of
additional model settings that will help you achieve a strict single-precision design.

• The Model Advisor warns you if Configuration Parameters > Optimization >
Default for underspecified data type is set to Double.

• The Model Advisor warns you if your model uses library standard that is not optimal
for strict-single precision designs.

• The Model Advisor warns you if Configuration Parameters > Optimization >
Implement logic signals as Boolean data is not selected.

The settings suggested by the Model Advisor prevent the introduction of doubles into
your generated code, which is optimal for strict-single designs.

System object instrumentation in Fixed-Point Tool

The Fixed-Point Tool now collects simulation ranges and proposes data types for select
DSP System Toolbox™ System objects used inside a MATLAB Function block. You
cannot propose data types based on derived range data.

Use of these System objects requires a DSP System Toolbox license. To learn more about
using the Fixed-Point Tool to convert System objects and to learn which System objects
are supported, see “Convert a System Object to Fixed Point Using the Fixed-Point Tool”.

R2015a
Version: 5.0

New Features

Bug Fixes

R2015a

2-2

Derived Ranges for MATLAB Function Blocks in Simulink

Using the Fixed-Point Tool, you can now derive ranges for variables inside a MATLAB
Function block in Simulink. The Fixed-Point Tool uses design ranges to derive ranges
for MATLAB variables in a MATLAB Function block. The tool can also propose data
types for the variables based on the derived range data. You must manually apply
the proposed data types to the variables. For more information, see Derive Ranges of
MATLAB Function Block Variables.

Fixed-Point Converter app enhancements, including detection of dead
and constant folded code, support for projects with multiple entry point
functions and support for global variables

The following enhancements have been added to the Fixed-Point Converter app:

Support for projects with multiple entry-point functions

You can now specify multiple entry-point functions in a Fixed-Point Converter app
project. If your end goal is to generate fixed-point C/C++ library functions, conversion
with multiple entry-point functions facilitates integration with larger applications. For
more information, see Generate Fixed-Point MATLAB Code for Multiple Entry-Point
Functions.

Support for global variables

You can now specify global variables in the Fixed-Point Converter app workflow and
convert algorithms which contain global variables without modifying your code. For more
information, see Convert Code Containing Global Variables to Fixed-Point.

Code coverage based translation

The Fixed-Point Converter app now detects dead and constant folded code within your
project and warns you if any parts of your code were not executed during the simulation
of your test file. This can help you verify if your test file is testing the algorithm over
the intended operating range. The app uses this code coverage information during the
translation of your code from floating-point MATLAB code to fixed-point MATLAB
code. The app inserts inline comments in the fixed-point code to mark the dead and
untranslated regions and includes the code coverage information in the generated fixed-
point conversion html report. This code coverage information is also available from the

http://www.mathworks.com/help/releases/R2015a/fixedpoint/ug/derive-ranges-of-matlab-function-block-variables.html
http://www.mathworks.com/help/releases/R2015a/fixedpoint/ug/derive-ranges-of-matlab-function-block-variables.html
http://www.mathworks.com/help/releases/R2015a/fixedpoint/ug/generate-fixed-point-matlab-code-for-multiple-entry-point-functions.html
http://www.mathworks.com/help/releases/R2015a/fixedpoint/ug/generate-fixed-point-matlab-code-for-multiple-entry-point-functions.html
http://www.mathworks.com/help/releases/R2015a/fixedpoint/ug/convert-code-containing-global-variables-to-fixed-point.html

2-3

command-line workflow. For more information, see Detect Dead and Constant-Folded
Code.

Conversion from project to MATLAB scripts for command-line fixed-point conversion

Using the -tocode option of the fixedPointConverter command, you can convert a
fixed-point conversion project to the equivalent MATLAB code in a MATLAB script. You
can use the script to repeat the project workflow in a command-line workflow. For more
information, see Convert Fixed-Point Conversion Project to MATLAB Scripts.

Generated fixed-point code enhancements

The generated fixed-point code now:

• Uses colon syntax for multi-output assignments, reducing the number of fi casts in
the generated fixed-point code.

• Preserves the indentation and formatting of your original algorithm, improving the
readability of the generated fixed-point code.

Integration with MATLAB Coder app interface

The Fixed-Point Converter app has been integrated into the new MATLAB Coder app
workflow. This integration allows for a smoother conversion process from floating-point
MATLAB code to fixed-point C/C++ code.

Automated conversion of additional DSP System objects using the Fixed-
Point Converter app

You can now convert the following DSP System Toolbox System objects to fixed-point
using the Fixed-Point Converter app:

• dsp.FIRDecimator
• dsp.FIRInterpolator
• dsp.FIRFilter, direct form and direct form transposed only
• dsp.LUFactor
• dsp.VariableFractionalDelay
• dsp.Window

You can propose and apply data types for these System objects based on simulation
range data. During the conversion process, you can view simulation minimum and

http://www.mathworks.com/help/releases/R2015a/fixedpoint/ug/detect-dead-and-constant-folded-code.html
http://www.mathworks.com/help/releases/R2015a/fixedpoint/ug/detect-dead-and-constant-folded-code.html
http://www.mathworks.com/help/releases/R2015a/fixedpoint/ug/convert-fixed-point-conversion-project-to-matlab-scripts.html
http://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.firdecimator-class.html
http://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.firinterpolator-class.html
http://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.firfilter-class.html
http://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.lufactor-class.html
http://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.variablefractionaldelay-class.html
http://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.window-class.html

R2015a

2-4

maximum values and proposed data types for these System objects. You can also view
whole number information and histogram data. You cannot propose data types for these
System objects based on static range data. This requires a DSP System Toolbox license.

Fixed-Point SimState logging and root logging improvements

The Simulink SimState feature allows you to save all run-time data necessary for
restoring the simulation state of the model. A SimState includes both the logged and
internal state of every block and the internal state of the Simulink engine. The Fixed-
Point Tool now supports SimState logging while fixed-point instrumentation is turned
on. For more information, see Save and Restore Simulation State as SimState.

Flexible structure assignment of buses

When a non-tunable structure is assigned to a bus signal (such as a block which uses a
structure for its initial condition parameter), the data type of the fields of the structure
no longer need to match the data type of the bus elements. The software now performs an
automatic casting of the data type of the structure field so that it matches the da;ta type
of the bus signal. This flexible structure assignment simplifies the fixed-point conversion
workflow by automatically casting the data type of the fields of the structure when using
data type override and autoscaling your model.

eye(m,'like',a) syntax supported for fixed-point inputs

The eye function now works with fixed-point data types as well as built-in data types.
The function can now return an output whose class matches that of a specified numeric
variable or fi object. For built-in data types, the output assumes the numeric data type,
sparsity, and complexity (real or complex) of the specified numeric variable. For fi
objects, the output assumes the numerictype, complexity (real or complex), and fimath
of the specified fi object.

New interpolation method for generating lookup table MATLAB function
replacements

The coder.approximation function now offers a 'Flat' interpolation method for
generating lookup table MATLAB function replacements. This fully-specified lookup
table achieves high speeds by discarding the pre-lookup step and reducing the use
of multipliers in the data path. This interpolation method is available from both the

http://www.mathworks.com/help/releases/R2015a/simulink/ug/saving-and-restoring-the-simulation-state-as-the-simstate.html
http://www.mathworks.com/help/releases/R2015a/fixedpoint/ref/eye.html
http://www.mathworks.com/help/releases/R2015a/fixedpoint/ref/coder.approximation.html

2-5

command-line workflow, and in the Function Replacements tab of the Fixed-Point
Converter app.

Fixed-point scaling information in Code Interface Report

Fixed-point scaling information is added to the code generation report in the Code
Interface Report section. Better accessibility to this information makes it easier for you to
integrate with generated code containing fixed-point data types. Each fixed-point entry in
the report table has a value in the new Scaling column giving its data type and fraction
length using Simulink fixed-point data type notation.

Access to the Code Interface Report requires an Embedded Coder license.

R2014b
Version: 4.3

New Features

Bug Fixes

Compatibility Considerations

R2014b

3-2

Fixed-Point Converter app for automated conversion of floating-point
MATLAB code

The Fixed-Point Converter app enables you to convert floating-point MATLAB code to
fixed-point MATLAB code.

You can choose to propose data types based on simulation range data, static range data,
or both.

During fixed-point conversion, you can:

• Propose fraction lengths based on default word lengths.
• Propose word lengths based on default fraction lengths.
• Optimize whole numbers.
• Specify safety margins for simulation min/max data.
• Test numerics by running the test file with the fixed-point types applied.
• Compare floating-point and fixed-point test results using the Simulation Data

Inspector or your own plotting functions.
• View a histogram of bits used by each variable.
• Specify replacement functions and generate approximate functions for functions in

the original MATLAB algorithm that are not supported for fixed point.

To open the app:

•
In the MATLAB Toolstrip, on the Apps tab, under Code Generation, click .

• At the MATLAB command prompt, enter fixedPointConverter.

For more information, see Fixed-Point Converter.

Commands for scripting fixed-point conversion and accessing the
collected data in Simulink

You can now use the DataTypeWorkflow.Converter class to collect simulation and
derived data, propose and apply data types to the model, and analyze results.

This class performs the same fixed-point conversion tasks as the Fixed-Point Tool. This
facilitates scripting of the automatic conversion workflow and accessing data for analysis.
For more information, see Convert a Model to Fixed Point Using the Command-Line.

http://www.mathworks.com/help/releases/R2014b/fixedpoint/ref/fixedpointconverter-app.html
http://www.mathworks.com/help/releases/R2014b/fixedpoint/ref/datatypeworkflow.converter-class.html
http://www.mathworks.com/help/releases/R2014b/fixedpoint/ug/convert-a-model-sing-the-command-line.html

3-3

Automated fixed-point conversion for commonly used DSP System
objects, including Biquad Filter, FIR Filter, and FIR Rate Converter

You can now convert the following DSP System Toolbox System objects to fixed point
using the Fixed-Point Converter app.

• dsp.BiquadFilter
• dsp.FIRFilter, direct form only
• dsp.FIRRateConverter
• dsp.LowerTriangularSolver
• dsp.UpperTriangularSolver
• dsp.ArrayVectorAdder

You can propose and apply data types for these System objects based on simulation
range data. During the conversion process, you can view simulation minimum and
maximum values and proposed data types for these System objects. You can also view
whole number information and histogram data. You cannot propose data types for these
System objects based on static range data. This requires a DSP System Toolbox license.
For more information, see Convert a System object to Fixed-Point Using the Fixed-Point
Converter App.

Simulation range collection and data type proposals for MATLAB Function
blocks in Simulink

The Fixed-Point Tool can now collect and display simulation ranges for variables inside a
MATLAB Function block. The tool can also propose data types for the variables based on
the simulation data. You must manually apply the proposed data types to the variables.
For more information, see Convert Model Containing MATLAB Function Block to Fixed
Point.

Overflow diagnostics to distinguish between wrap and saturation in
Simulink

You can now separately control the diagnostics for overflows that wrap and overflows
that saturate by setting each diagnostic to error, warning, or none. These controls
simplify debugging models in which only one type overflow is of interest. For example,
if you need to detect only overflows that wrap, in the Data Validity pane of the

http://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.biquadfilter-class.html
http://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firfilter-class.html
http://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firrateconverter-class.html
http://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.lowertriangularsolver-class.html
http://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.uppertriangularsolver-class.html
http://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.arrayvectoradder-class.html
http://www.mathworks.com/help/releases/R2014b/fixedpoint/ug/convert-a-dsp-firfilter-object-to-fixed-point-using-the-fixed-point-converter-app.html
http://www.mathworks.com/help/releases/R2014b/fixedpoint/ug/convert-a-dsp-firfilter-object-to-fixed-point-using-the-fixed-point-converter-app.html
http://www.mathworks.com/help/releases/R2014b/fixedpoint/ug/convert-a-model-with-a-matlab-function-block-to-fixed-point.html
http://www.mathworks.com/help/releases/R2014b/fixedpoint/ug/convert-a-model-with-a-matlab-function-block-to-fixed-point.html

R2014b

3-4

Configuration Parameters dialog box you can set Wrap on overflow to error or
warning, and set Saturate on overflow to none.

Highlighting of potential data type issues in generated HTML report

You can now highlight potential data type issues in the generated HTML report. The
report highlights MATLAB code that requires single-precision, double-precision, or
expensive fixed-point operations. The expensive fixed-point operations check identifies
optimization opportunities by highlighting expressions in the MATLAB code that require
cumbersome multiplication or division, or expensive rounding.

For more information, see Find Potential Data Type Issues in Generated Code

Code generation of for loops using fixed-point loop indices

Fixed-point data types are now supported as for-loop indices in codegen. This capability
requires a MATLAB Coder license. For more information, see for.

Cast net slope computations using rational numbers

This new option improves the numerical accuracy and the readability of the C code
generated for certain fixed-point conversions having nonbinary net slopes. Normally,
net slope computation uses an integer multiplication followed by shifts. Enabling this
optimization replaces the multiply and shift operation with a multiply and divide
sequence that uses a rational number under certain simplicity and accuracy conditions.

For example, applying a net slope of 0.9, which traditionally would have generated

Vc = (int16_T)(Va * 115 >> 7);

becomes

Vc = (int16_T)(Va * 9/10);

This optimization affects both simulation and code generation. For more information, see
Handle Net Slope Computation.

Lock Column View option in the Fixed-Point Tool

This option prevents the Fixed-Point Tool from automatically changing the column view
of the contents pane. To enable this option, in the Fixed-Point Tool menu, click View >
Lock Column View. This setting is preserved across sessions.

http://www.mathworks.com/help/releases/R2014b/fixedpoint/ug/data-type-issues-in-generated-code_buhkuhq-1.html
http://www.mathworks.com/help/releases/R2014b/fixedpoint/ref/for.html
http://www.mathworks.com/help/releases/R2014b/fixedpoint/ug/optimizing-your-generated-code.html#br8zpf1-1

3-5

Fixed-Point Advisor enhancements

• Improved support for interaction with Simulink data objects, including bus objects
• Block replacement recommendations for blocks with CORDIC support

hdlram renamed hdl.RAM

The hdlram System object™ has been renamed hdl.RAM. This System object no longer
requires a Fixed-Point Designer™ license.

Compatibility Considerations

If you open a design that uses hdlram, the software displays a warning. For continued
compatibility with future releases, replace instances of hdlram with hdl.RAM.

Changes to data type strings

Signal data type display

Signals using fixed-point data types with slope and bias scaling now always display the
slope value in the data type name. In previous releases, the display decomposed the
slope into slope adjustment factor and fixed exponent when it led to a more compact
string. For example, the data type fixdt(1,32,0.01953125,0) now gets the name
sfix32_S0p01953125. In previous releases, the name was in the decomposed format
sfix32_F1p25_en6.

tostring function now uses 0 and 1 to represent signedness

The string representation of numerictype and fixdt objects returned by the tostring
function now use 0 and 1 to represent signedness rather than true and false.

T = numerictype(true,16,15);

T.tostring

ans =

numerictype(1,16,15)

When programmatically processing data types, best practice is to convert string
representations to numerictype objects. The string changes for this release do not
change the object that the strings are converted to. To convert a data type name string

http://www.mathworks.com/help/releases/R2014b/fixedpoint/ref/tostring.html

R2014b

3-6

to an object, pass the string as the input argument to fixdt or numerictype. For
example, fixdt('sfix32_S0p01953125') and fixdt('sfix32_F1p25_En6') return
identical numerictype objects. To convert the results of the tostring function back
to an object, use the eval function. For example, the numerictype objects returned by
eval('numerictype(1,16,15)') and eval('numerictype(true,16,15)') are
identical.

Compatibility Considerations

If your code converts data type strings to objects before doing any processing, then you
will not have any compatibility issues related to the string changes. If you depend on
the exact text returned by the tostring function or the exact text of a Simulink data
type name, then you must modify your code to account for the changes described here.
Alternatively, you can convert the string to a numerictype object before doing any
additional processing.

New featured examples

The Fixed-Point Conversion Using Fixed-Point Tool and Derived Range Analysis
example demonstrates using derived range analysis and the Fixed-Point Tool to convert a
corner detection model to fixed point.

http://www.mathworks.com/help/releases/R2014b/matlab/ref/eval.html
http://www.mathworks.com/help/releases/R2014b/fixedpoint/examples/fixed-point-conversion-using-fixed-point-tool-and-derived-range-analysis.html

R2014a
Version: 4.2

New Features

Bug Fixes

R2014a

4-2

Data type override and automatic data typing for bus objects

Data type override for bus objects

You can now apply data type override to models and subsystems that use virtual and
non-virtual buses. The bus element types obey the data type override settings. This
capability allows you to:

• Obtain the idealized floating-point behavior of models that use buses.
• Obtain the ideal derived ranges for models that use buses.
• Easily compare the idealized floating-point behavior with the fixed-point behavior of

models that use buses.
• Use data type override to share fixed-point models that use buses with users who do

not have a fixed-point license.

Autoscaling for bus objects

You can autoscale models that use virtual and non-virtual buses. This capability
facilitates fixed-point conversion and optimization of models. The Fixed-Point Tool
automatically proposes fixed-point data types for bus elements which removes the need
to perform manual analysis and conversion of bus element data types.

For more information, see Refine Data Types of a Model with Buses Using Simulation
Data.

Derived ranges for complex signals in Simulink

Using the Fixed-Point Tool, you can now derive ranges for complex signals in Simulink.
For more information, see Conversion Using Range Analysis.

cordicsqrt function for fixed-point CORDIC-based square root
functionality

The cordicsqrt function provides a CORDIC-based approximation of square root for
use in fixed-point applications. For more information, see cordicsqrt and Compute Square
Root Using CORDIC.

http://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/perform-fixed-to-fixed-conversion-using-simulation-data.html
http://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/perform-fixed-to-fixed-conversion-using-simulation-data.html
http://www.mathworks.com/help/releases/R2014a/fixedpoint/conversion-using-range-analysis.html
http://www.mathworks.com/help/releases/R2014a/fixedpoint/ref/cordicsqrt.html
http://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/compute-square-root-using-cordic-hyperbolic-kernel.html
http://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/compute-square-root-using-cordic-hyperbolic-kernel.html

4-3

Overflow detection with scaled double data types in MATLAB Coder
projects

The MATLAB Coder Fixed-Point Conversion tool now provides the capability to detect
overflows. At the numerical testing stage in the conversion process, the tool simulates the
fixed-point code using scaled doubles. It then reports which expressions in the generated
code produce values that would overflow the fixed-point data type. For more information,
see Detect Overflows Using the Fixed-Point Conversion Tool and Detecting Overflows.

You can also detect overflows when using the codegen function. For more information,
see coder.FixptConfig and Detect Overflows at the Command Line.

These capabilities require a MATLAB Coder license.

Fixed-point ARM Cortex-M code replacement support for DSP System
Toolbox FIR filters

Fixed-point ARM® Cortex®-M code replacement library support is now available for the
Discrete FIR block and the dsp.FIRFilter System object.

These capabilities require a DSP System Toolbox license.

Fixed-Point Advisor support for referenced configuration sets

The Fixed-Point Advisor now supports referenced configuration sets. For more
information, see Preparing for Data Typing and Scaling.

Enhancements to automated conversion of MATLAB code

R2014a includes the following enhancements to the fixed-point conversion capability in
MATLAB Coder projects.

These capabilities require a MATLAB Coder license.

Support for MATLAB classes

You can now use the MATLAB Coder Fixed-Point Conversion tool to convert floating-
point MATLAB code that uses MATLAB classes. For more information, see Fixed-Point
Code for MATLAB Classes.

http://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/detect-overflows-during-automated-conversion.html
http://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/fixed-point-conversion.html#bt9yuxb
http://www.mathworks.com/help/releases/R2014a/coder/ref/coder.fixptconfig-class.html
http://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/detect-overflows-at-the-command-line.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.firfilter-class.html
http://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/prepare-for-data-typing-and-scaling.html
http://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/generating-fixed-point-code-for-matlab-classes.html
http://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/generating-fixed-point-code-for-matlab-classes.html

R2014a

4-4

Generated fixed-point code enhancements

The generated fixed-point code now:

• Uses subscripted assignment (the colon(:) operator). This enhancement produces
concise code that is more readable.

• Has better code for constant expressions. In previous releases, multiple parts of an
expression were quantized to fixed point. The final value of the expression was less
accurate and the code was less readable. Now, constant expressions are quantized
only once at the end of the evaluation. This new behavior results in more accurate
results and more readable code.

For more informations, see Generated Fixed-Point Code.

Fixed-point report

In R2014a, when you convert floating-point MATLAB code to fixed-point C/C++ code,
the code generation software generates a fixed-point report in HTML format. For the
variables in your MATLAB code, the report provides the proposed fixed-point types
and the simulation or derived ranges used to propose those types. For a function,
my_fcn, and code generation output folder, out_folder, the location of the report is
out_folder/my_fcn/fixpt/my_fcn_fixpt_Report.html. If you do not specify
out_folder in the project settings or as an option of the codegen command, the default
output folder is codegen.

Automatic C compiler setup

In earlier releases, to set up a compiler before using fiaccel to accelerate MATLAB
algorithms, you were required to run mex -setup. Now, the code generation software
automatically locates and uses a supported installed compiler. You can use mex -setup
to change the default compiler. See Changing Default Compiler.

More flexible control of dsp.LMSFilter System object fixed-point settings

For all dsp.LMSFilter System object fixed-point settings, you can now specify
independent fixed-point data types.

This capability requires a DSP System Toolbox license.

http://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/generated-fixed-point-code.html
http://www.mathworks.com/help/releases/R2014a/fixedpoint/ref/fiaccel.html
http://www.mathworks.com/help/releases/R2014a/matlab/matlab_external/changing-default-compiler.html
http://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.lmsfilter-class.html

4-5

Derived ranges for For Each and For Each Subsystem blocks

Range analysis supports For Each and For Each Subsystem blocks, with the following
limitations:

• When For Each Subsystem contains another For Each Subsystem, not supported.
• When For Each Subsystem contains one or more Simulink Design Verifier™ Test

Condition, Test Objective, Proof Assumption, or Proof Objective blocks, not supported.

http://www.mathworks.com/help/releases/R2014a/simulink/slref/foreach.html
http://www.mathworks.com/help/releases/R2014a/simulink/slref/foreachsubsystem.html
http://www.mathworks.com/help/releases/R2014a/sldv/ref/testcondition.html
http://www.mathworks.com/help/releases/R2014a/sldv/ref/testcondition.html
http://www.mathworks.com/help/releases/R2014a/sldv/ref/testobjective.html
http://www.mathworks.com/help/releases/R2014a/sldv/ref/proofassumption.html
http://www.mathworks.com/help/releases/R2014a/sldv/ref/proofobjective.html

R2013b
Version: 4.1

New Features

Bug Fixes

Compatibility Considerations

R2013b

5-2

C99 long long integer data type for embedded code generation

If your target hardware and your compiler support the C99 long long integer data type,
you can use this data type for code generation. Using long long results in more efficient
generated code that contains fewer cumbersome operations. Multi-line fixed-point helper
functions can be replaced by simple expressions. This data type also provides more
accurate simulation results for fixed-point and integer simulations. If you are using
Microsoft® Windows® (64-bit), using long long improves performance for many workflows
including:

• Using Accelerator mode in Simulink
• Working with Stateflow® software
• Generating C code with Simulink Coder
• Accelerating fixed-point code using fiaccel
• Generating C code and MEX functions with MATLAB Coder

For more information about enabling long long in Simulink, see the Enable long
long and Number of bits: long long configuration parameters on the Hardware
Implementation Pane.

For more information about enabling long long for MATLAB Coder, see
coder.HardwareImplementation.

Model Advisor fixed-point checks with additional coverage and
optimization awareness

The Model Advisor fixed-point checks now cover additional blocks in base Simulink and
System Toolboxes. The checks also now include the MATLAB Function block, System
objects, Stateflow, and fi objects. These improved checks consider model settings such
as hardware configuration and code generation settings. These updated checks also avoid
false negative results.

These checks require an Embedded Coder license.

For more information, see:

• Identify blocks that generate expensive rounding code
• Identify questionable fixed-point operations
• Identify blocks that generate expensive fixed-point and saturation code

http://www.mathworks.com/help/releases/R2013b/simulink/gui/hardware-implementation-pane.html
http://www.mathworks.com/help/releases/R2013b/simulink/gui/hardware-implementation-pane.html
http://www.mathworks.com/help/releases/R2013b/coder/ref/coder.hardwareimplementationclass.html
http://www.mathworks.com/help/releases/R2013b/ecoder/ref/embedded-codersimulink-coder-checks.html#braj1_6-21
http://www.mathworks.com/help/releases/R2013b/ecoder/ref/embedded-codersimulink-coder-checks.html#braj1_6-23
http://www.mathworks.com/help/releases/R2013b/ecoder/ref/embedded-codersimulink-coder-checks.html#btzunno-1

5-3

fi object as an index in colon expressions and an argument to numel
and bit index functions

fi object as an index in colon expressions

You can now use fi objects in colon expressions. When you use fi in a colon expression,
all colon operands must have integer values. See the fi and colon reference pages for
examples.

fi objects as bit index input argument

The bitget, bitset, bitsliceget, bitandreduce, bitorreduce, and bitxorreduce functions now
accept fi objects as the bit index argument.

fi objects as shift-value input argument

The bitsra, bitsrl, bitsll, bitrol, and bitror functions now accept fi objects as the
shift-value input argument. You can use fi and built-in data type shift values
interchangeably in MATLAB functions. This new capability facilitates fixed-point
conversion.

numel function support for fi inputs

Effective R2013b, the numel function returns the number of elements in a fi array.
Using numel in your MATLAB code returns the same result for built-in types and fi
objects. Use numel to write data-type independent MATLAB code for array handling; you
no longer need to use the numberofelements function.

The numel function is supported for simulation and code generation and with the
MATLAB Function block in Simulink.

For more information, see numel.

Improved efficiency of data type internal rules for Lookup Table blocks

Blocks in the Lookup Tables library have a new internal rule for fixed-point data types to
enable faster hardware instructions for intermediate calculations (with the exception of
the Direct Lookup Table (n-D), Prelookup and Lookup Table Dynamic blocks). To use this
new rule, select Speed for the Internal Rule Priority parameter in the dialog box. To
use the R2013a internal rule, select Precision.

http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/fi.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/colon.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitget.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitset.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitsliceget.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitandreduce.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitorreduce.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitxorreduce.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitsra.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitsrl.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitsll.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitrol.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitror.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/numel.html

R2013b

5-4

Derived ranges for complex variables in MATLAB Coder projects

Using the Fixed-Point Conversion tool in MATLAB Coder projects, you can now derive
ranges for complex variables. For more information, see Propose Data Types Based on
Derived Ranges. This capability requires a MATLAB Coder license.

Simplified modeling of single-precision designs

Fixed-Point Designer now uses strict single-precision algorithms for operations between
singles and integer or fixed-point data types. Operations, such as cast, multiplication
and division, use single-precision math instead of introducing higher-precision doubles
for intermediate calculations in simulation and code generation. You no longer have to
explicitly cast integer or fixed-point inputs of these operations to single precision. To
detect the presence of double data types in your model, use the Model Advisor Identify
questionable operations for strict single-precision design check.

Compatibility Considerations

In R2013b, for both simulation and code generation, Fixed-Point Designer avoids the
use of double data types to achieve strict single design for operations between singles
and integers or fixed-point types. In previous releases, Fixed-Point Designer used double
data types in intermediate calculations for higher precision. You might see a difference in
numerical behavior of an operation between earlier releases and R2013b.

For example, when you cast from a fixed-point or integer data type to single or vice versa,
the type used for intermediate calculations can significantly affect numerical results.
Consider:

• Input type: ufix128_En127
• Input value: 1.999999999254942 — Stored integer value is (2^128 -2^100).
• Output type: single

Release Calculation performed by Fixed-Point Designer Output
Result

Design Goal

R2013b Y = single(2^-127) * single(2^128-2^100)

= single(2^-127) * Inf

Inf Strict singles

Previous
releases

Y = single(double(2^-127) * double(2^128 -

2^100))

= single(2^-127 * 3.402823656532e+38)

2 Higher-precision
intermediate
calculation

http://www.mathworks.com/help/releases/R2013b/fixedpoint/ug/propose-data-types-based-on-derived-ranges.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ug/propose-data-types-based-on-derived-ranges.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/simulink-checks_bq6d4aa-1.html#btzpiip-1
http://www.mathworks.com/help/releases/R2013b/simulink/slref/simulink-checks_bq6d4aa-1.html#btzpiip-1

5-5

There is also a difference in the generated code. Previously, Fixed-Point Designer allowed
the use of doubles in the generated code for a mixed multiplication that used single and
integer types.

m_Y.Out1 = (real32_T)((real_T)m_U.In1*(real_T)m_U.In2);

In R2013b, it uses strict singles.

m_Y.Out1=(real32_T)m_U.In1*m_U.In2;

You can revert to the numerical behavior of previous releases, if necessary. To do so,
insert explicit casting from integer and fixed-point data types to doubles for the inputs of
these operations.

Range analysis support on Mac platforms

You can now perform derived range analysis of your model on Mac platforms. For more
information, see Conversion Using Range Analysis.

Changes to showInstrumentationResults function options

New option to suppress display of MATLAB code

When generating a printable instrumentation report, you can now choose to display only
the tables that show information about logged variables. Used with the -printable
option, the -nocode option suppresses display of the MATLAB code. Displaying only the
logged variable information is useful for large projects with many lines of code.

Removal of -browser option

The showInstrumentationResults function -browser option has been removed. Use
the -printable option instead. The -printable option creates a printable report and
opens it in the system browser.

For more information, see showInstrumentationResults.

Changes to Continuous state-space block family range analysis support

The Continuous Simulink blocks State-Space, Transfer Fcn, and Zero-Pole are not
supported and not stubbable for range analysis. For more information on blocks that are
supported for range analysis, see Supported and Unsupported Simulink Blocks.

http://www.mathworks.com/help/releases/R2013b/fixedpoint/conversion-using-range-analysis.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/showinstrumentationresults.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ug/simulink-block-support.html

R2013b

5-6

Compatibility Considerations

If you have a model that contains one or more continuous State-Space, Transfer Fcn, or
Zero-Pole blocks, your model is incompatible with range analysis. Consider analyzing
smaller portions of your model to work around this incompatibility.

Enhanced fiaccel support for int64 and uint64 functions

The fiaccel function now supports int64 and uint64 with fi inputs.

Support for LCC compiler on Microsoft Windows (64-bit) machines

If you are using Microsoft Windows (64-bit), LCC-64 is now available as the default
compiler. You no longer have to install a separate compiler to perform fixed-point
acceleration using fiaccel.

Warning for use of inexact fi and fimath property names

All fi and fimath property names are case sensitive and require that you use the
full property names. Effective R2013b, if you use inexact property names, Fixed-Point
Designer generates a warning.

Compatibility Considerations

To avoid seeing warnings for fi and fimath properties, update your code so that it
uses the full names and correct cases of all these properties. The full names and correct
cases of the properties appear when you display a fi or fimath object on the MATLAB
command line.

Conversion of numeric variables into Simulink.Parameter objects

You can now convert a numeric variable into a Simulink.Parameter object using a
single step.
myVar = 5; % Define numerical variable in base workspace

myObject = Simulink.Parameter(myVar); % Create data object and assign variable value to data object value

Previously, you did this conversion using two steps.
myVar = 5; % Define numerical variable in base workspace

myObject = Simulink.Parameter; % Create data object

http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/int64.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/uint64.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/fiaccel.html

5-7

myObject.Value = myVar; % Assign variable value to data object value

Fixed-point conversion test file coverage results

The MATLAB Coder Fixed-Point Conversion tool now provides test file coverage results.
After simulating your design using a test file, the tool provides an indication of how
often the code is executed. If you run multiple test files at once, the tool provides the
cumulative coverage. This information helps you determine the completeness of your test
files and verify that they are exercising the full operating range of your algorithm. The
completeness of the test file directly affects the quality of the proposed fixed-point types.

This capability requires a MATLAB Coder license.

For more information, see Code Coverage.

Fixed-point conversion workflow supports designs that use enumerated
types

Using the Fixed-Point Conversion tool in MATLAB Coder projects, you can now propose
data types for enumerated data types using derived and simulation ranges.

For more information, see Propose Fixed-Point Data Types Based on Derived Ranges and
Propose Fixed-Point Data Types Based on Simulation Ranges. This capability requires a
MATLAB Coder license.

Fixed-point conversion of variable-size data using simulation ranges

Using the Fixed-Point Conversion tool in MATLAB Coder projects, you can propose data
types for variable-size data using simulation ranges.

For more information, see Propose Fixed-Point Data Types Based on Simulation Ranges.
This capability requires a MATLAB Coder license.

Error checking improvements for bitconcat, bitandreduce,
bitorreduce, bitxorreduce, bitsliceget functions

The bitconcat, bitandreduce, bitorreduce, bitxorreduce, and bitsliceget functions now
check that all input arguments are real. If any inputs are complex, these functions
generate an error.

http://www.mathworks.com/help/releases/R2013b/fixedpoint/ug/test-file-coverage.html
http://www.mathworks.com/help/releases/R2013b/coder/ug/propose-data-types-based-on-derived-ranges.html
http://www.mathworks.com/help/releases/R2013b/coder/ug/propose-data-types-based-on-simulation-and-derived-ranges.html
http://www.mathworks.com/help/releases/R2013b/coder/ug/propose-data-types-based-on-simulation-and-derived-ranges.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitconcat.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitandreduce.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitorreduce.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitxorreduce.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitsliceget.html

R2013b

5-8

The bitconcat function now generates an error in the unary syntax case,
bitconcat(a), if the input argument a is a scalar or is empty. To use bitconcat with
one input argument, the argument must have more than one array element available for
bit concatenation (that is, length(a)>1).

Legacy data type specification functions return numeric objects

In previous releases, the following functions returned a MATLAB structure describing a
fixed-point data type:

• float
• sfix
• sfrac
• sint
• ufix
• ufrac
• uint

Effective R2013b, they return a Simulink.NumericType object. If you have existing
models that use these functions as parameters to dialog boxes, the models continue to
run as before and there is no need to change any model settings.

These functions do not offer full Data Type Assistant support. To benefit from this
support, use fixdt instead.

Function Return Value in
Previous Releases —
MATLAB structure

Return Value Effective R2013b — NumericType

float('double') Class: 'DOUBLE' DataTypeMode: 'Double'

float('single') Class: 'SINGLE' DataTypeMode: 'Single'

sfix(16) Class: 'FIX'

 IsSigned: 1

 MantBits: 16

DataTypeMode: 'Fixed-point: unspecified scaling'

 Signedness: 'Signed'

 WordLength: 16

ufix(7) Class: 'FIX'

 IsSigned: 0

 MantBits: 7

DataTypeMode: 'Fixed-point: unspecified scaling'

 Signedness: 'Unsigned'

 WordLength: 7

http://www.mathworks.com/help/releases/R2013b/simulink/slref/float.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/sfix.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/sfrac.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/sint.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/ufix.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/ufrac.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/uint.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/simulink.numerictype.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/fixdt.html

5-9

Function Return Value in
Previous Releases —
MATLAB structure

Return Value Effective R2013b — NumericType

sfrac(33,5) Class: 'FRAC'

 IsSigned: 1

 MantBits: 33

 GuardBits: 5

DataTypeMode: 'Fixed-point: binary point scaling'

 Signedness: 'Signed'

 WordLength: 33

 FractionLength: 27

ufrac(44) Class: 'FRAC'

 IsSigned: 0

 MantBits: 44

 GuardBits: 0

DataTypeMode: 'Fixed-point: binary point scaling'

 Signedness: 'Unsigned'

 WordLength: 44

 FractionLength: 44

sint(55) Class: 'INT'

 IsSigned: 1

 MantBits: 55

DataTypeMode: 'Fixed-point: binary point scaling'

 Signedness: 'Signed'

 WordLength: 55

 FractionLength: 0

uint(77) Class: 'INT'

 IsSigned: 0

 MantBits: 77

DataTypeMode: 'Fixed-point: binary point scaling'

 Signedness: 'Unsigned'

 WordLength: 77

 FractionLength: 0

Compatibility Considerations

MATLAB Code

MATLAB code that depends on the return arguments of these functions being a structure
with fields named Class, MantBits or GuardBits no longer works correctly. Change
the code to access the appropriate properties of a NumericType object, for example,
DataTypeMode, Signedness, WordLength, FractionLength, Slope and Bias.

C Code

Update C code that expects the data type of parameters to be a legacy structure to handle
NumericType objects instead. For example, if you have S-functions that take legacy
structures as parameters, update these S-functions to accept NumericType objects.

MAT-files

Effective R2013b, if you open a Simulink model that uses a MAT-file that contains a data
type specification created using the legacy functions, the model uses the same data types
and behaves in the same way as in previous releases but Simulink generates a warning.

R2013b

5-10

To eliminate the warning, recreate the data type specifications using NumericType
objects and save the MAT-file.

You can use the fixdtupdate function to update a data type specified using the legacy
structure to use a NumericType. For example, if you saved a data type specification in a
MAT-file as follows in a previous release:

oldDataType = sfrac(16);

save myDataTypeSpecification oldDataType

use fixdtUpdate to recreate the data type specification to use NumericType:

load DataTypeSpecification

fixdtUpdate(oldDataType)

ans =

 NumericType with properties:

 DataTypeMode: 'Fixed-point: binary point scaling'

 Signedness: 'Signed'

 WordLength: 16

 FractionLength: 15

 IsAlias: 0

 DataScope: 'Auto'

 HeaderFile: ''

 Description: ''

For more information, at the MATLAB command line, enter:

fixdtUpdate

numberofelements function being removed in a future release

The numberofelements function will be removed in a future release of Fixed-Point
Designer software. Use numel instead.

http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/numberofelements.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/numel.html

R2013a
Version: 4.0

New Features

Bug Fixes

Compatibility Considerations

R2013a

6-2

Product restructuring

The Fixed-Point Designer product replaces two pre-existing products: Fixed-Point
Toolbox™ and Simulink Fixed Point™. You can access archived documentation for both
products on the MathWorks® Web site.

Histogram logging in instrumented MATLAB Code Generation report

The buildInstrumentedMex and showInstrumentationResults instrumentation
functions now can generate log2 histograms. A histogram is generated for each named
and intermediate variable and for each expression in your code. The code generation
report Variables tab includes a link to the histogram for each variable. You can use
this histogram to determine the word and fraction lengths for your fixed-point values.
Refer to the buildInstrumentedMex and showInstrumentationResults reference pages for
information.

fi object in indexing and switch-case expressions

Effective this release, you can use fi objects as indices to arrays of built-in types and fi
types. You can also use fi objects in switch-case expressions. These changes let you use
fi objects without having to convert them. See the fi reference page for examples.

zeros, ones, and cast code reuse for floating-point and fixed-point
types

The zeros, ones, and cast functions now work with fixed-point data types as well as
built-in data types. The functions can now return an output whose class matches that of
a specified numeric variable or fi object. For built-in data types, the output assumes the
numeric data type, sparsity, and complexity (real or complex) of the specified numeric
variable. For fi objects, the output assumes the numerictype, complexity (real or
complex), and fimath of the specified fi object.

For example:

>> a = fi([],1,24,12);

>> c = cast(pi,'like',a)

c =

http://www.mathworks.com/help/doc-archives.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/buildinstrumentedmex.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/showinstrumentationresults.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/fi.html

6-3

 3.1416

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 24

 FractionLength: 12

>> z = zeros(2,3,'like',a)

z =

 0 0 0

 0 0 0

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 24

 FractionLength: 12

>> o = ones(2,3,'like',a)

o =

 1 1 1

 1 1 1

 DataTypeMode: Fixed-point: binary point scaling

 Signedness: Signed

 WordLength: 24

 FractionLength: 12

This capability allows you to cleanly separate algorithm code in MATLAB from data type
specifications. Using separate data type specifications enables you to:

• Reuse your algorithm code with different data types.
• Switch easily between fixed-point and floating-point data types to compare fixed-point

behavior to a floating-point baseline.
• Try different fixed-point data types to determine their effect on the behavior of your

algorithm.
• Write clean, readable code.

For more information, see Implement FIR Filter Algorithm for Floating-Point and Fixed-
Point Types using cast and zeros.

http://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/convert-fir-filter-to-fixed-point-with-types-separate-from-code.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/convert-fir-filter-to-fixed-point-with-types-separate-from-code.html

R2013a

6-4

Code generation for x.^n when n is a variable and x is a fi object

If the output type can be derived from the input settings, the mpower and power
functions no longer require a constant exponent input. For more information, see mpower
and power.

Fixed-Point Advisor support for model reference

The Fixed-Point Advisor now performs checks on referenced models. It checks the entire
model reference hierarchy against fixed-point guidelines. The Advisor also provides
guidance about model configuration settings and unsupported blocks to help you prepare
your model for conversion to fixed point.

Automated conversion of floating-point to fixed-point types in MATLAB
Coder projects

You can now convert floating-point MATLAB code to fixed-point C code using the fixed-
point conversion capability in MATLAB Coder projects. You can choose to propose data
types based on simulation range data, static range data, or both.

Note: You must have a MATLAB Coder license.

During fixed-point conversion, you can:

• Propose fraction lengths based on default word lengths.
• Propose word lengths based on default fraction lengths.
• Optimize whole numbers.
• Specify safety margins for simulation min/max data.
• Validate that you can build your project with the proposed data types.
• Test numerics by running the test file with the fixed-point types applied.
• View a histogram of bits used by each variable.

For more information, see Propose Fixed-Point Data Types Based on Simulation Ranges
and Propose Fixed-Point Data Types Based on Derived Ranges.

http://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/mpower.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/power.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/propose-data-types-based-on-simulation-ranges.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/propose-data-types-based-on-derived-ranges.html

6-5

Improved autoscaling for models with virtual bus signals

Autoscaling with the Fixed-Point Tool now handles data type constraints for virtual
buses that do not have any associated bus objects. The data type proposals take into
account the constraints introduced by these bus signals.

This improved autoscaling reduces data type mismatch errors. It also enables the Fixed-
Point Tool to provide additional diagnostic information when you accept autoscaling
proposals. For more information, see Shared Data Type Summary.

Data Type Override for MATLAB Function block using built-in doubles and
singles

The data type override rules for MATLAB Function block input signals and parameters
have changed. If the input signals and parameters are double or single, and you
specify data type override to be Double or Single, the overridden data types are now
built-in double or built-in single, not fi double and fi single as in previous
releases. If the input signals and parameters are fi objects or fixed-point signals, and
you specify data type override to be Double or Single, the overridden data types are
fi double and fi single as in previous releases. For more information, see MATLAB
Function Block with Data Type Override.

Compatibility Considerations

If you have MATLAB Function block code from previous releases that contains special
cases for fi double or fi single, and you specify data type override to be Double or
Single, you might have to update this code to handle built-in double and single.

Instrumentation for arrays of structs

The buildInstrumentedMex and showInstrumentationResults instrumentation functions
now show instrumentation results for arrays of structs. Each field of each struct is logged
and appears in the code generation report on the Variables tab.

File I/O function support

The following file I/O functions are now supported for code acceleration and generation:

• fclose

http://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/working-with-the-fixed-point-tool.html#br18ikk-3
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/matlab-function-block.html#bsyjhnu-3
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/matlab-function-block.html#bsyjhnu-3
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/buildinstrumentedmex.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/showinstrumentationresults.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/fclose.html

R2013a

6-6

• fopen
• fprintf

To view implementation details, see Functions Supported for Code Acceleration or
Generation.

Support for nonpersistent handle objects

You can now accelerate code using fiaccel for local variables that contain references to
handle objects or System objects. In previous releases, accelerating code for these objects
was limited to objects assigned to persistent variables.

Load from MAT-files for code acceleration

fiaccel now supports a subset of the load function for loading run-time values from a
MAT-file. It also provides a new function, coder.load, for loading compile-time constants.
This support facilitates code generation from MATLAB code that uses load to load
constants into a function. You no longer have to manually type in constants that were
stored in a MAT-file.

To view implementation details for the load function, see Functions Supported for Code
Acceleration or Generation.

New toolbox functions supported for code acceleration and generation

To view implementation details, see Functions Supported for Code Acceleration or
Generation.

Bitwise Operation Functions

• flintmax

Computer Vision System Toolbox Classes and Functions

• binaryFeatures
• insertMarker
• insertShape

Data File and Management Functions

• computer

http://www.mathworks.com/help/releases/R2013a/matlab/ref/fopen.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/fprintf.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/functions-supported-for-code-acceleration-and-code-generation-from-matlab.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/functions-supported-for-code-acceleration-and-code-generation-from-matlab.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/load.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/coder.load.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/functions-supported-for-code-acceleration-and-code-generation-from-matlab.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/functions-supported-for-code-acceleration-and-code-generation-from-matlab.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/functions-supported-for-code-acceleration-and-code-generation-from-matlab.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/functions-supported-for-code-acceleration-and-code-generation-from-matlab.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/flintmax.html
http://www.mathworks.com/help/releases/R2013a/vision/ref/binaryfeaturesclass.html
http://www.mathworks.com/help/releases/R2013a/vision/ref/insertmarker.html
http://www.mathworks.com/help/releases/R2013a/vision/ref/insertshape.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/computer.html

6-7

• fclose
• fopen
• fprintf
• load

Image Processing Toolbox Functions

• conndef
• imcomplement
• imfill
• imhmax
• imhmin
• imreconstruct
• imregionalmax
• imregionalmin
• iptcheckconn
• padarray

Interpolation and Computational Geometry

• interp2

MATLAB Desktop Environment Functions

• ismac
• ispc
• isunix

String Functions

• strfind
• strrep

Function to be removed in a future release

The saveglobalfimathpref will be removed in a future release.

http://www.mathworks.com/help/releases/R2013a/matlab/ref/fclose.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/fopen.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/fprintf.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/load.html
http://www.mathworks.com/help/releases/R2013a/images/ref/conndef.html
http://www.mathworks.com/help/releases/R2013a/images/ref/imcomplement.html
http://www.mathworks.com/help/releases/R2013a/images/ref/imfill.html
http://www.mathworks.com/help/releases/R2013a/images/ref/imhmax.html
http://www.mathworks.com/help/releases/R2013a/images/ref/imhmin.html
http://www.mathworks.com/help/releases/R2013a/images/ref/imreconstruct.html
http://www.mathworks.com/help/releases/R2013a/images/ref/imregionalmax.html
http://www.mathworks.com/help/releases/R2013a/images/ref/imregionalmin.html
http://www.mathworks.com/help/releases/R2013a/images/ref/iptcheckconn.html
http://www.mathworks.com/help/releases/R2013a/images/ref/padarray.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/interp2.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/ismac.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/ispc.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/isunix.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/strfind.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/strrep.html

R2013a

6-8

Compatibility Considerations

Do not save globalfimath as a MATLAB preference. If you have previously saved
globalfimath as a MATLAB preference, use removeglobalfimathpref to remove it.

Function being removed

The emlmex function has been removed.

Compatibility Considerations

The emlmex function generates an error in R2013a. Use fiaccel instead.

http://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/fiaccel.html

